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Introduction 

Spatial dependence occurs when an observation recorded at one point in space is dependent on an 

observation(s) at another point(s) in space (Cassandra et al. 2000). Spatial autocorrelation statistic measure 

and analyze the degree of dependency among observations in a geographic space. Observations made at 

different locations may not be independent.  Measurements made at nearby locations may be closer in value 

than measurements made at locations farther apart.  This phenomenon is called spatial autocorrelation. 

Positive spatial autocorrelation occurs when similar values occur near one another.  Negative spatial 

autocorrelation occurs when dissimilar values occur near one another. According to Ciccone 1996, the 

aggregate level of technology in each country may not only rely on externalities originated by capital 

accumulation within the country, but also on the aggregate level of technology of its neighbors.  

 

Similarly, Spatial effects are important in explaining agricultural growth. States can interact strongly with 

each other through channels such as trade, technological diffusion, capital inflows, and common political, 

economic and social policies. Present study focuses only on detecting the spatial relationship among the 

states. Spatial autocorrelation is the correlation between the values of a single variable that is strictly due to 

the proximity of these values in geographical space by introducing a deviation from the assumption of 

independent observations of classical statistics (Griffith 2003). The most common spatial autocorrelation 

indicators in the literature are: the Moran’s I and the Geary’s c. These tests test the null hypothesis of no 

spatial dependence against the alternative hypothesis of spatial dependence. 

 

Measures of Spatial Autocorrelation 

Weight Matrix: To assess spatial autocorrelation, one first needs to define what is meant by two 

observations being close together, i.e., a distance measure must be determined.  These distances are 

presented in weight matrix, which defines the relationships between locations where measurements were 

made.  If data are collected at n  locations, then the weight matrix will be nxn with zeroes on the diagonal.  

The weight matrix can be specified in many ways: 

 The weight for any two different locations is a constant. 

 All observations within a specified distance have a fixed weight. 

 K nearest neighbors have a fixed weight, and all others are zero. 

 Weight is proportional to inverse distance, inverse distance squared, or inverse distance up to a 

specified distance. 

Other weight matrices are possible.  The weight matrix is often row-standardized, i.e., all the weights in a 

row sum to one.  Note that the actual values in the weight matrix are up to the researcher. 
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Moran's I 

Moran’s I is one of the oldest statistics used to examine spatial autocorrelation. This global statistic was first 

proposed by Moran 1948 & 1950. Later, Cliff and Ord 1973 & 1981 present a comprehensive work on 

spatial autocorrelation and suggested a formula to calculate the I which is now used in most textbooks and 

software. Moran's I (Moran 1950) tests for global spatial autocorrelation for continuous data. It is based on 

cross-products of the deviations from the mean and is calculated for n observations on a variable x at 

locations i, j as: 

𝐼 =
𝑛

𝑆0

  𝑤𝑖𝑗(𝑥𝑖 − 𝑥 )(𝑥𝑗 − 𝑥 )𝑗𝑖

 (𝑥𝑖 − 𝑥 )2𝑖
 

where 𝑥   is the mean of the x variable, 𝑤𝑖𝑗  are the elements of the weight matrix, and S0 is the sum of the 

elements of the weight matrix 𝑆0 =   𝑤𝑖𝑗𝑗𝑖 . 

Moran’s I is similar but not equivalent to a correlation coefficient.  It varies from -1 to +1.  In the absence of 

autocorrelation and regardless of the specified weight matrix, the expectation of Moran’s I statistic is -1/(n-

1), which tends to zero as the sample size increases.  For a row-standardized spatial weight matrix, the 

normalizing fact or S0 equals n (since each row sums to 1), and the statistic simplifies to a ratio of a spatial 

cross product to a variance.  A Moran’s I coefficient larger than -1/(n-1) indicates positive spatial 

autocorrelation, and a Moran’s I less than -1/(n-1) indicates negative spatial autocorrelation. The variance is: 

𝑉𝑎𝑟(𝐼) =  
𝑛{(𝑛2 − 3𝑛 + 3)𝑆1 − 𝑛𝑆2 + 3𝑆0

2} − 𝑘{𝑛(𝑛 − 1)𝑆1 − 2𝑛𝑆2 + 6𝑆0
2}

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑆0
2 − 

1

(𝑛 − 1)2
 

where 𝑆1 = 
1

2
  (𝑊𝑖𝑗 + 𝑊𝑖𝑗)

2 = 2𝑆0 𝑓𝑜𝑟 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑊 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 0′𝑠 𝑎𝑛𝑑 1′𝑠𝑖≠𝑗  

𝑆2 = ∑(𝑊𝑖0 +𝑊0𝑖)
2 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖0 = ∑𝑊𝑖𝑗  𝑎𝑛𝑑 𝑊0𝑖 = ∑𝑊𝑗𝑖

𝑗𝑗𝑖

 

 

Geary's c 

Geary’s c statistic (Geary 1954) is based on the deviations in responses of each observation with one 

another: 

𝑐 =  
𝑛 − 1

2𝑆0

  𝑊𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2

𝑗𝑖

 (𝑥𝑖 − 𝑥 )2𝑖
 

Geary’s c ranges from 0 (maximal positive autocorrelation) to a positive value for high negative 

autocorrelation. Its expectation is 1 in the absence of autocorrelation and regardless of the specified weight 

matrix (Sokal and Oden 1978a & 1978b).  If the value of Geary’s c is less than 1, it indicates positive spatial 

autocorrelation.  The variance is:  

𝑉𝑎𝑟 (𝑐) =  
1

𝑛(𝑛 − 2)(𝑛 − 3)𝑆0
2  {𝑆0

2[(𝑛2 − 3) − 𝑘(𝑛 − 1)2] + 𝑆1(𝑛 − 1)[𝑛2 − 3𝑛 + 3 − 𝑘(𝑛 − 1)]

+ 
1

4
𝑆2(𝑛 − 1)[𝑘(𝑛2 − 𝑛 + 2) − (𝑛2 + 3𝑛 − 6]} 

where S0, S1 and S2 are the same as in Moran’s I. 

 

Comparison of Moran’s I and Geary’s C 

Moran’s I is a more global measurement and sensitive to extreme values of x whereas Geary’s c is more , 

sensitive to differences in small neighborhoods. In general, Moran’s I and Geary’s c result in similar 

conclusions.  However, Moran’s I is preferred in most cases since Cliff and Ord 1973 & 1981 have shown 

that Moran’s I is consistently more powerful than Geary’s c. These tests test the null hypothesis of no spatial 

dependence against the alternative hypothesis of spatial dependence. 
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Determination of spatial dependency  

Foodgrain-yield of eight states of North Eastern Region (NER) of India over the years from 1967 to 2017 

has been analyzed for spatial dependency among the states. There are 408 observations in total. Each state 

has 51 observations for each corresponding 51 years. Out of 408 observations 19 were unobserved - first 

four observations in Meghalaya and Mizoram; and first 15 observation in Sikkim.  The location of each 

observation is expressed in the corresponding latitude and longitude coordinates.  

 

Autocorrelation analysis features of PROC VARIOGRAM of SAS 9.3 was used to compute Moran’s I and 

Geary’s c statistic. It reports the two-sided p-values for Moran's I and Geary's c coefficients under the null 

hypothesis that the sample values are not autocorrelated. That is the probability that the observed coefficient 

lies farther away from |Z| on either side of the coefficient’s expected value, that is, lower than - Z or higher 

than + Z. Smaller p-values correspond to stronger autocorrelation for both coefficients. However, the p-

values do not tell us whether the autocorrelation is positive or negative. Positive autocorrelation is indicated 

when the Z score for Moran's I is positive (ZI>0) or the Z score for Geary's c is negative (Zc<0). Negative 

autocorrelation is indicated when ZI<0 or Zc>0. The resulting autocorrelation statistic containing Moran's I 

and Geary's c coefficients with distance weight is shown in table 1. Based on the small p-values of the 

reported Moran's I and Geary's c coefficients, we reject the null hypothesis of zero spatial autocorrelation in 

the values of foodgrain-yield. The sign of Z for both Moran’s I and Geary’s c coefficients indicates positive 

autocorrelation in the data values.  

 

The distance matrix used in the above calculations is a 385×385 matrix where each off-diagonal entry (i,j) in 

the matrix is equal to 1/(1+h), where h is the distance between point i and point j. Further Moran's I and 

Geary's c coefficients were also estimated with binary weight by assigning a threshold distance of 1 such 

that pairs with distances less than 1 are considered connected or close and pairs with distances greater than 1 

are not.  

 

From table 1 it is also seen that the change in distance measure does not change the interpretation from the 

previous discussion with distance weight. Based on the small p-value of the reported Moran's I and Geary's c 

coefficients under binary weight, we reject the null hypothesis of zero spatial autocorrelation in the values of 

foodgrain-yield. The Z scores again indicate a positive autocorrelation. 

 

Table 1: Autocorrelation statistic of Moran's I and Geary's c for spatial values of foodgrain-yield in the 

states of NER. 

Distance measure Coefficient Observed Expected Std Dev Z Pr > |Z| 

Distance Weight 
Moran's I 0.053 -0.003 0.002 24.030 <.0001 

Geary's c 0.966 1.000 0.010 -3.410 0.001 

Binary Weight 
Moran's I 0.094 -0.003 0.007 13.380 <.0001 

Geary's c 0.908 1.000 0.028 -3.270 0.001 

 

From table 2 it is seen that all the pair-distances are accommodated within lag 9 with a lag distance of 0.67. 

Highest number of pairs are found in lag 3 (26.25%) and lowest number of pairs are found in lag 7 (2.84%). 

The same is depicted in figure 1. 
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Table 2: Pairwise distance intervals for spatial analysis of values of foodgrain-yield in the states of NER. 

Lag Class Bounds Number of pairs Percentage of pairs 

0 0 0.33 0 0 

1 0.33 1 5202 0.0803 

2 1 1.67 9996 0.1544 

3 1.67 2.33 16999 0.2625 

4 2.33 3 7395 0.1142 

5 3 3.67 7395 0.1142 

6 3.67 4.34 6894 0.1065 

7 4.34 5 1836 0.0284 

8 5 5.67 5364 0.0828 

9 5.67 6.34 3672 0.0567 

10 6.34 7 0 0 

 

Figure 1: Pairwise distance intervals for spatial analysis of values of foodgrain-yield. 

 
 

Figure 2: Spatial distribution of foodgrain-yield of states of NER based on centroid coordinates. 
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Conclusion 

Foodgrain yield of neighboring states had closer values than that of the non-neighboring states. The detected 

spatial dependency was based on the centroid geographical coordinates of the states through replication of 

51 time periods. However, this part of analysis in the study was just to detect whether spatial dependency in 

the values of foodgrain-yield of the north eastern states exist or not and from the above discussion, spatial 

dependency in the region was witnessed for the values of foodgrain-yield. Further analysis based on this 

spatial dependency can be carried out incorporating spatial panel data analysis as future scope of this study. 

A plot of spatial distribution of foodgrain yield is given in figure 2. 
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